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ACCURACY IMPROVEMEN T TECHNIQUE FOR M E A S U R I N G  
STRESS INTENSITY FACTORS IN PHOTOELASTIC EXPERIMENT 

Tae-Hyun Baek* and Christian P. Burger** 

(Received October 29, 1990) 

Fracture coefficients, together with the exact origin of the crack, were extracted from data .sets produced an overdeterministic 
system solved by an iterative least squares method. Power series type williams equations were used in the analyses. The accuracy 
evaluation indicated that the first four terms of williams equations are sufficient to describe the stress field in the vicinity of the 
crack tip for both mode I and mixed mode cases. Experimental study showed that the first two terms of williams equations, which 
are the same as the modified westergaard equations, cannot be used to extract mixed mode fracture parameters accurately within 
the data collection region of 0.07 < r/a < 0.30, where r and a are radial coordinate and crack length for art edge crack, respectively. 
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1. INTRODUCTION 

Since the first use of the photoelast ic  method to study the 
stress field in the vicinity of an edge crack (Post, 1954), many 
different techniques have  been tried to ex t rac t  f racture  par- 
ameters  f rom the isochromatic  fringes near  the crack tip 
(Bradley and Kobayashi ,  1970 ; Sanford and Dally, 1979 ; 
Smith, 1980). However ,  there  has  been no genera l  agree~ 
ment  on which method is the most suitable for the determina.  
t ions of stress intensity factors(SIFs)  for c racks (Mur thy  and 
Rao, 1984). 

To  improve the accuracy of photoelast ic  data  analysis for 
a c rack  tip, fringe sharpening technique(Baek,  Koerner  and 
Burger, 1988) with a digital  image processing system was 
used. The  ambigui ty  of the origin of a crack tip was solved by 
including the origin of the tip as two more unknowns, i.e.,x~ 
and yo as shown in Fig. 2, in the overdeterminis t ic  i terat ive 
least squares method(Sanford ,  1980) by which the coeffi- 
cients for the specified equat ions are  calculated to fit the 
equat ions to the observed fringes. Power  series type Wil l iams 
equat ions(WilI iams,  1957) were  used in the analyses. The  
accuracy  of the exper imenta l  results were evaluated 
qual i ta t ively and quanti tat ively.  

2. PROCEDURE OF DATA ANALYSIS 

2.1 Equations in the Analysis  
For  a homogeneous  and isotropic solid in a s tate of plane 

stress or strain with zero body forces, the stress components  
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are  represented in terms of stress function, x, as 

1 8 2 x  , 1 &v (la) 

82x 
a ~ :  j r  2 (lb) 

1 82x 
r r e :  r 3r8• ( lc)  

For  a c r a c k ( a :  + ~r) shown in Fig. I, Wil l iams proposed the 

fol lowing series type of stress function (Williams, 1957). 
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Fig. 1 Polar stress components in a sharp angular 

corner. 
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Note that the terms multiplied by An are symmetric (mode 

I) and the terms with B, are anti-symmetric(mode n ) with 

respect to 0 = 0  ~ From the definition of K-factors and Eq. 

( l - a ,  b, c) and (2), mode I and mode ~ SIFs(Kx and Ku) 

can be defined by 

K~=lim ~ ae=2vr~A, (3a) 
r~0 
o - 0  

Kn =l im 2f2~- rro=2(~B~ (3b) r-0 0-0 

2.2 Method of Photoelastic Data Analysis 
The stress optic law in photoelasticity relates the iso- 

chromatic fringe order (N) to in-plane maximum shear stress 

( r~x), which can be expressed in terms of polar stress compo- 

nents. Arranging the above relations, one can obtain an 

arbi t rary funotion, G, whose value should be zero in the ideal 

case. 

G(A., B n ) = ~ - ~  ---) •  - ~ - ]  (4) 

Where fa and h are the material  fringe value and the length 

of the light path in the model, respectively. The least squares 

fitting technique(Sanford, 1980) to calculate the unknown 

location of the crack tip started with the initial measured 

location of tip, Ore, which is assumed to deviate xo and yo 

from the corrected tip, Oc, in Fig. 2. Radius r~ and angle 0~ 

are the measured coordinates of a data point P at which 

fringe order is N. Then, the corrected corrdinates for point P 

are r~ and 0~, where 

r~=~/(Xo+ rmcos 8~)2+ (yo+ r . s in  0.) 2 

(o .  0~=tan_l Yxo++ ;.cS~ 0. 

(,5) 

(6) 

The unknown parameters,  Xo and yo, are added to the frac- 

ture coefficients An and B,, and Eq. (,l) can be rewritten as 

G. (A., B., Xo, yo)=O (7) 

Where the subscript k refers to the number of arbi t rary data 

points whose number should be more than that of the unkn- 

own parameters.  

2.3 Back-Plot and Statistical Evaluation 
The basic relation between isochromatic fringe order(N) 

and in-plane polar stress components can be expressed as 

( N f a ~ 2 _ [  a r - - a o ~ 2 - - ,  ~z 
(8) 

Substituting Eq. (1 a,b,c) and (2) with the calculated values 

for coefficients An and Bn in place yields a polynomial type 

of equation in terms of 4~. For  a chosen angle 0 and fringe 

order N, the corrdinate r along the line 0, where fringe order 

will occur, can be expressed as 

V. 

/ ~ - ~ N . r ,  6 ) 

- ~__. C~.__ X,, ....o~ 

Fig. 2 Relation between measured and corrected coor- 
dinates with consideration of crack tip devia- 
tion from the initial estimated crack tip origin. 

f(47-)=Cl(TY)m+C2(4-~)'-l+...+C.+,=o (9) 

Where m is the order of f r -  and C I, C 2, "", C m+l are  the 

constants of the polynomial. The polynomial can be solved 

efficiently by Newton's method with synthetic division, 

known as Horner's method (Johnson and Riess, 1982). These 

results are used to generate theoretical fringe loops or back- 

plots. When these back-plots are visually compared to the 

actual fringe loops, one obtain a qualitative assessement of 

the acouracies of the values of SIFs. 

A quantitative check for the quality of fit between real and 

regenerated fringes is then made by simple type of statistical 

parameter,  such as standard deviation(SD) of percentage 

error. For a predetermined point, the experimentally obser- 

ved fringe value(Nexp) is known. Regenerated fringe value 

(Nreg) is also calculated at the same point. Then, the per- 

centage er ror (E)  between the regenerated and experimen- 

tally observed fringe value at any point is 
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E =  Nr~-Nexp • 100% (10) 
Next, 

For k data points, s tandard deviation of the percentage error 

can be calculated from 

SD= / kl-~_ I [~Ek2--~(~,Ek)2] (11) 

2.4 C o m p u t a t i o n a l  P r o c e d u r e  

To calculate fracture parameters  from the given iso- 

chromatic fringes in the neighborhood of a crack tip, and 

evaluate the accuracy of SIF results obtained from the analy- 

sis, programs(Baek,  1986 ; Baek, Koerner and Burger, 1988) 

of fringe sharpening, data acquistion, calculation of coeffi- 

cients, back-plot and accuracy evaluation were developed 

and used. 

3. EXPERIMENTS 

3.1 M o d e l  P r e p a r a t i o n  

For the study of mixed mode fracture parameters,  plates 

were cast, pre-cured and machined to the shape and size 
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Fig. 3 Model geometries of inclined through-thickness 
edge crack plate. 

Fig. 4 
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(a) Isochromatic fringe loops in the vicinity of 
the crack tip (/7 =44.5~ 

(b) Fringe sharpened image and collected data 
locations. 

(c) Best back-plots drawn by using the results 
obtained by the first four terms of Williams 
equations. 
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shown in Fig. 3. In this study, the effect of the far boundary 

on the crack tip was kept small by holding a/W=0.2. A 

uniform far field tensile stress across the plate width, W, was 

achieved by choosing H~ W= 2. These dimensions were based 

o--o :Resul ts  by correc t ing  the 
crack t i p  or ig in  

o---o :ResulLs by e s t i n a t i n g  the 
crack t ip  or ig in  
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Variations of SIF and statistical parameter 
with respect to the number of terms of Williams 
equations. 

on the previous research on boundary effects(Theocaris, 

1972). The photoelastic material used in the experimnts were 

"3DMU-050" which is a product of Stress and Strain Labo- 

ratory, Dallas in Texas. 

Before testing any of the specimens, they were loaded and 

viewed in white light in a circular polariscope. The unifor- 

mity of the far-field stress was checked visually to ensure 

uniform colar across the cross section far from the crack tip. 

The material fringe value of each plate was calculated from 

the circular disk cut from the same plate. Fig. 4 (a) shows the 

fringe patterns around the crack tip. This image was proces- 

sed by the fringe sharpening program and data were collected 

on the fringe sharpened lines as shown in Fig. 4 (b). Fig. (c) 

shows the best back-plot whose standard deviation value is 

minimum. 

2 . 2  R e s u l t s  a n d  D i s c u s s i o n s  

For the SIF analysis from raw data collected on the fringe 

sharpened images, two sets of programs were developed. The 

first set calculates the coefficients directly from fringe data 

and estimated crack tip origin by the usual iterative least 

squares method{Sanford, 1980). The second set includes the 

statistical correction for the crack tip origin(Baek, 1986). 

Fig. 5(a), (b) show the variations of Kz/K~o(where K~o= 

a4~d) and SD with respect to the number  of terms of 

Williams equations when using these two sets of programs. 

The statistical improvement caused by an increase in the 

number of terms is obvious from Fig. 6. Standard deviations 

continuously decrease until 4 terms of the equations are used. 

For n>4,  the SDs increase for all three models. SD values 

were minimum when 4 terms were used. 

Table 1 shows the final results for two-dimensional edge 

cracked models. All the results for three models were 

obtained by using the four terms of Williams equations. 

4. CONCLUSIONS 

From the results presented in the :preceding experiments, 

the following significant conclusions can be drawn. 

Table  1 Test conditions and final experimental results obtained from two dimensional crack analsysis. 

Model No. 

-0.5"--1.5" 
22,5" 
44.5" 

( a / W )  a ~ 

0.200 
0.200 
0.197 

ab(kPa) 

3524. 
3604. 
4102. 

K,/ K.o 

1.418 
1.289 
0.851 

K,,/ K, 

0.007 
0.232 
0.494 

Ec(%) SDd(%) 

0.246 0.903 
0.111 1.303 
0.015 1.447 

"See Fig. 3 for the symbols. 
bThe stress a=P/A, where P=applied load and A=gross cross section of the model. 

CMean of percentage error defined by Eq. (10). 
aStandard deviation of percentage error defined by Eq.(1D. 
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(1) Correcting the origin of the crack tip by the iterative 

least squares method can substantially increase the accuracy 

of data analysis providing that appropriate analytical equa- 

tions for the stress field in the vicinity of the crack tip are 

used (see Fig. 5). 

(2) For mixed mode cases, two terms of Williams equa- 

tions, which are the same as the modified Westergoard equa- 
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Variations of standard deviation(SD) with re- 
spect to the number of terms of Williams equa- 
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tions (Irwin, 1958), may not be sufficient to describe the stress 

field around a crack tip. This is true even if the data collec- 

tion region is small(0.07< r/a<0.30). Those equations can 

only be used to get an approximate K~ in pure mode I ,  and 

they should not be used for mixed mode analyses (see Fig. 6). 

(3) Generally, for both mode I and mixed mode cases, the 

first four terms or O(r)  of Williams power series type 

expressions appear to be sufficient to describe the stress field 

arround the crack tip for the relatively close region to the 
crack tip used in these experiments. This conclusion can be 

applicable to the stress field of the crack whose interactons 

with other cracks or boundaries are not extreme. The inclu- 

sions of higher order terms in r,/~- do not improve the 

accuracy of the SIF results. In fact, the quality of the results 

deteriorates when n >4 (see Fig. 6). 
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